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The linear stability of viscoelastic (Oldroyd-B) film flow down an inclined plane lined with a deformable
(neo-Hookean) solid layer is analyzed using low-wave-number asymptotic analysis and the Chebyshev-Tau
spectral numerical method. The free surface of film flows of viscoelastic liquids, unlike that of their Newtonian
counterparts, becomes unstable in flow down a rigid inclined surface even in the absence of fluid inertia, due
to the elastic nature of the liquids. For film flow past a deformable solid, our low-wave-number asymptotic
analysis reveals that the solid deformability has a stabilizing effect on the free-surface instability, and, remark-
ably, this prediction is insensitive to rheology of the liquid film, be it viscoelastic or Newtonian. Using the
spectral numerical method, we demonstrate that the free-surface instability can be completely suppressed at all
wave numbers when the solid becomes sufficiently deformable. For the case of pure polymeric liquids without
any solvent, when the solid layer is made further deformable, both the free surface and the liquid-solid
interface are destabilized at finite wave numbers. We also demonstrate a type of mode exchange phenomenon
between the modes corresponding to the two interfaces. Importantly, our numerical results show that there is a
sufficient range of shear modulus of the solid where both the modes are stable at all wave numbers. For
polymer solutions described by the Oldroyd-B model, while the free-surface instability is suppressed by the
deformable solid, a host of new unstable modes appear at finite Reynolds number and wave number because of
the coupling between liquid flow and free shear waves in the solid. Our study thus demonstrates that the
elastohydrodynamic coupling between liquid flow and solid deformation can be exploited either to suppress the
free-surface instability (present otherwise in rigid inclines) in viscoelastic film flows, or to induce new insta-
bilities that are absent in flow adjacent to rigid surfaces.
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I. INTRODUCTION

Gravity-driven film flows with free surfaces of both New-
tonian and rheologically complex liquids are frequently en-
countered in a diverse class of physical settings and tech-
nological applications such as precision coating in photo-
graphic films, flow in lung airways involving liquid linings,
etc. A ubiquitous feature of liquid film flows past a solid wall
is the instability [1-7] of the free surface, which manifests as
gravity-driven surface waves with wavelengths much larger
than the film thickness. From a fundamental standpoint, the
motivation for studying these systems stems from the rich
spatiotemporal nonlinear dynamics exhibited by these film
flows (e.g., solitary waves, transitions from laminar to more
complex and turbulent flows), and for this reason these flows
have served as model systems in the understanding of insta-
bility and bifurcation phenomena [8]. Even from a techno-
logical perspective, there is immense interest in the under-
standing, prediction, and control of free-surface instabilities
in coating operations [9], where stable film flows of single or
multiple layers are desirable because the occurrence of insta-
bilities in the free surface is detrimental to the quality of the
manufactured coating product. With a view to controlling
and suppressing the free-surface instability, several strategies
have been explored in the literature, including in-plane oscil-
lations of the bottom wall [10-14], wall heating [15], and the
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presence of surfactants at the free surface [16—19]. Recently,
soft solid coatings were suggested as potential candidates to
suppress free-surface instabilities in Newtonian liquid flows
[20,21]. These studies showed that, when the solid layer be-
comes sufficiently deformable, the elastohydrodynamic cou-
pling between the liquid flow and solid deformation sup-
presses the free-surface instability for perturbations with any
wavelength, without introducing any additional instability in
the system. However, many applications in coating processes
involve polymeric liquids, which are viscoelastic. The vis-
coelastic nature of polymeric liquids significantly alters the
stability and dynamics of film flows, and it renders the free
surface unstable even in the absence of fluid inertia [4—7]. In
view of this alternative destabilizing mechanism in poly-
meric films involving elastic effects, the question arises as to
whether the previous predictions of instability suppression
for Newtonian liquid flows are still valid for viscoelastic
films. In particular, is there a generic mechanism whereby
the free-surface instability in film flows is suppressed by de-
formable solid coatings, irrespective of the fluid rheology?
To address this question, we undertake here a comprehensive
study of gravity-driven viscoelastic film flow past a deform-
able solid layer wusing both an analytical long-wave
asymptotic technique and a numerical spectral solution. Be-
fore proceeding to formulate the problem, we first review
relevant literature in this area, and motivate the context for
the present study.

The linear instability of the free surface of Newtonian
film flows down an inclined plane was first demonstrated by
Benjamin [1] and Yih [2]. Yih used a long-wave analysis and
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showed that film flow is unstable at any nonzero Reynolds
number for rigid vertical inclines. For surfaces inclined at an
angle, a finite nonzero critical Reynolds number is required
for the instability. In stark contrast, a series of studies [4—7]
carried out for polymeric liquids, which are viscoelastic in
nature, showed that the film flow is unstable even at zero
Reynolds number (i.e., creeping flow), but at nonzero Weis-
senberg number, which is a nondimensional number charac-
terizing the relaxation time or elasticity in the liquid. Clearly,
the noninertial destabilizing mechanism in viscoelastic lig-
uids is qualitatively different from that for Newtonian lig-
uids, and this elastically driven free-surface instability was
attributed to the coupling between the base flow and pertur-
bation velocity and stresses at the free surface [22]. At non-
zero Reynolds number, both the inertial and elastic mecha-
nisms are operative in a viscoelastic liquid. The stability of
film flows down an inclined plane has also been generalized
to Newtonian two-layer flows [23-26], and here the liquid-
liquid interface was shown to become unstable even at zero
Reynolds number, owing to the interaction between the free
surface and the liquid-liquid interface. This study has been
extended to two-layer viscoelastic film flows as well [27].
The presence of insoluble surfactants at the free surface, in
general, results in the stabilization of the free-surface insta-
bility, and thereby increases the critical Reynolds number for
destabilization. Blyth and Pozrikidis [16] showed that the
effect of an insoluble surfactant is stabilizing on the classical
instability of Yih, but there arises a new “Marangoni” mode
associated with the periodic variation of surfactant concen-
tration, which, however, remains stable. Thus, they con-
cluded that the surfactant has a stabilizing effect on the
interfacial dynamics of film flows. Shkadov et al. [17] con-
sidered solubility of the surfactant molecules by accounting
for adsorption and desorption from the free surface, and
showed that four new modes appear in addition to the free-
surface instability due to Marangoni-driven diffusion of sur-
factants, while the free-surface mode itself is stabilized by
the Marangoni effect. Recently, Wei [18,19] studied the sta-
bility of viscoelastic film flow in the presence of surfactants
and interfacial shear. Application of interfacial shear was
found to destabilize the Marangoni mode and stabilize the
elasticity induced instability depending on the strength and
direction of the applied interfacial shear.

While the above-mentioned studies focused on the nature
of the free-surface instability per se in various systems, there
have also been some studies which explored the possibility
of controlling the free-surface instability by different meth-
ods. Lin er al. [10] studied the effect of in-plane horizontal
oscillations (in the direction parallel to the flow) in the in-
clined plate on the free-surface instability using Floquet
theory. They showed that, by use of appropriate amplitudes
and frequencies of the forced oscillations, it is possible to
suppress the free-surface instability of the liquid film flow. A
similar conclusion was reached by Jiang and Lin [12] on the
effect of horizontal oscillations on two-layer liquid film flow.
The strategy of imposing wall oscillations has also been ex-
tended to viscoelastic film flows down an inclined plane by
Khomami and co-workers [13,14]. More recently, Demekhin
et al. [15] explored the possibility of using heating of the
inclined surface by a linearly increasing temperature distri-

PHYSICAL REVIEW E 76, 046314 (2007)

bution, and showed that, at small Prandtl numbers, the tem-
perature gradient leads to stabilization of all the unstable
modes.

These suggestions for instability suppression may be cat-
egorized as “active” methods (i.e., externally imposed oscil-
lations or heating of the plate) toward suppressing the free-
surface instability. In the present study we examine the
feasibility of a “passive” method, where a deformable solid
coating is proposed for suppressing the free-surface instabil-
ity in viscoelastic film flows. The elastohydrodynamic cou-
pling between fluid flow and solid deformation is well
known to induce instabilities at the liquid-solid interface,
leading to the formation of interfacial waves, as shown (by
both theory and experiments) in Refs. [28—31]. There has
also been some work [32] on the effect of deformability of
the wall on the capillary instability of an annular liquid film
coated inside a cylindrical elastic shell. Here, the base state is
a stationary liquid film of uniform thickness, which is desta-
bilized by curvature-induced capillary forces. The concomi-
tant pressure variations in the liquid film induce a deforma-
tion in the shell as well, which in turn enhances the
instability of the liquid film.

In this study, we examine the opposite possibility of in-
stability suppression at the free surface of viscoelastic liquids
by employing a deformable solid layer. Toward this end, it is
important to realize that both the solid and the liquid layers
can admit waves in isolation, and, when coupled together, it
is crucial to ensure that no new additional instabilities are
induced in the coupled liquid-solid system [33]. Previous
studies on Newtonian film flow past a deformable solid have
shown that while the long-wave free-surface instability was
suppressed by the deformable solid layer, increasing the de-
formability of the solid further induced finite wavelength in-
stabilities in the system. Further, for a range of shear modu-
lus of the solid, it was shown that there are no instabilities at
any wave number, thus making deformable solid coatings
potential candidates for instability suppression. The numeri-
cal methodology used to arrive at this conclusion was based
on a Newton-Raphson iteration of the characteristic equation
(obtained by numerically integrating the governing differen-
tial equations) supplemented by asymptotic solutions at low
wave number and zero Reynolds number. However, at finite
wave number and inertia in the fluid, it is now well known
that many new unstable modes proliferate, owing to the cou-
pling between the free shear waves in the elastic solid and
the liquid flow [34,35]. These “inertial” modes in the
coupled liquid-solid system are not accessible to the
Newton-Raphson iterative method without the presence of a
good initial guess for the solution. Thus, while the previous
predictions [20,21] are indicative of instability suppression,
they are not conclusive, because it is necessary to determine
the complete spectrum of eigenvalues in order to demon-
strate instability suppression by the deformable solid layer.
To address this limitation, in the present work, we undertake
a spectral Chebyshev-Tau [36,37] numerical solution of the
governing equations, which yields the complete spectrum of
eigenvalues without requiring any initial guess.

It is also pertinent here to remark on the rheological con-
stitutive relations used to describe the liquid and solid layers
in this study. We use the Oldroyd-B—upper-convected Max-
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well class of models [38,39] to describe the rheology of the
liquid layer, as these models retain the essential qualitative
physics necessary to capture the free-surface instability in
polymeric liquids. The Oldroyd-B model attempts to de-
scribe the rheological behavior of polymer solutions,
wherein a polymer molecule is coarse grained by a “dumb-
bell” consisting of two beads which act as the source of
hydrodynamic resistance, connected by an infinitely exten-
sible “spring” which mimics the entropic elasticity of a
single polymer molecule. This model predicts a first-normal
stress difference in simple shear flow, but also predicts a
shear-rate-independent viscosity, unlike real polymeric liq-
uids. For the solid layer, while many theoretical studies in
the area have used the linear elastic model for describing the
deformation in the solid, recently Gkanis and Kumar [30,40]
pointed out that the linear elastic model is strictly valid only
when the strain in the solid layer is small, and that appropri-
ate modifications must be made at finite deformations in or-
der to obey the principle of material-frame indifference
[41,42]. In lieu of the linear elastic solid, they suggested the
use of a neo-Hookean model, which is a frame-invariant gen-
eralization of the Hookean model for solids, and is appli-
cable for finite and large deformations [43] typically encoun-
tered in soft solid materials such as elastomers. The neo-
Hookean solid yields a first-normal stress difference in the
base state, and the discontinuity of this normal stress in the
base state at the liquid-solid interface was shown to give rise
to a short-wave instability, which is absent in linear vis-
coelastic solids. In this study, therefore, we employ the neo-
Hookean constitutive relation to determine the solid defor-
mation. The remainder of this paper is organized as follows.
Section I A presents the governing equations and boundary
conditions, and Sec. II B describes the base-state velocity
and stresses in both the liquid and solid layers. The linear-
ized governing equations along with interface conditions are
given in Sec. II C. A low-wave-number asymptotic analysis
is carried out in Sec. III A, and the numerical methods used
in this study are outlined in Sec. III B. The main results from
our numerical solution are discussed in Sec. IV, and we end
with the salient conclusions in Sec. V.

II. PROBLEM FORMULATION

The system consists of an incompressible viscoelastic lig-
uid flowing past an incompressible and impermeable deform-
able solid. The solid is strongly bonded to a rigid inclined
plane at z*=(1+H)R and makes an angle 6 with the horizon-
tal as shown in Fig. 1. The polymeric liquid is modeled using
the Oldroyd-B model [38,39], and the stress in this model
can be regarded as originating from two contributions: a vis-
coelastic contribution from the bead-spring units and a vis-
cous contribution from the solvent; this model has three ma-
terial constants: the shear-rate-independent viscosity pu,
relaxation time 7, and a nondimensional ratio of solvent to
polymeric contribution to the viscosity. In what follows, the
density of the fluid is denoted by p and g is the gravitational
acceleration; u, and u, are the viscosities of pure solvent
and pure polymer, respectively; hence the total viscosity of
the solution is given by u=pu,+pu,. The liquid layer is in
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FIG. 1. Schematic diagram of the flow configuration and non-
dimensional coordinate system.

contact with a passive gas and occupies a region 0=z"=<R.
The thickness of the solid layer is HR and its shear modulus
is G. In what follows, we denote dimensional variables with
an asterisk, and nondimensional variables without any super-
script. It is convenient to nondimensionalize various physical
quantities by using the following scales: lengths and dis-
placements by R; velocities by pgR? sin 6/2u =V, which is
the free-surface velocity of the liquid layer; time by R/V;
pressure and solid stresses by wV/R; polymeric stresses by
pV/R; and solvent stresses by u,V/R.

A. Governing equations

The nondimensional equations governing the dynamics of
the liquid are the mass and momentum conservation equa-
tions:

V.v=0, (1)

(ﬁv ) 2

Rel —+v-Vv|=V-T+—3§. (2)
ot sin 6

Here, v represents the velocity field in the liquid, ¢ is the unit
vector pointing in the direction of gravity, and Re=pV R/ u
is the Reynolds number. T=—p A+ 7 is the total stress tensor
in the fluid, which is the sum of an isotropic pressure —p,I
and the extra-stress tensor 7=87"+(1—8)7". Here B=u,/u
is the ratio of the solvent viscosity to the total viscosity. The
solvent contribution to the extra-stress tensor 7 is represented
by #=[Vv+(Vv)T], while 7 is the polymeric contribution
to the extra-stress tensor, which is given by the Oldroyd-B
constitutive relation [7,39]

a7
W(E+V-V7p—(VV)T-1‘”—7“"VV>+7P=VV+(VV)T,

3)

where W= 7,V/R is the nondimensional Weissenberg num-
ber characterizing the relaxation time of the viscoelastic
fluid. If we set the ratio of solvent to total viscosity S to zero,
then we obtain the upper-convected Maxwell (UCM) model
which attempts to describe the rheology of polymer melts
without any solvent. The deformable solid wall is modeled as
an incompressible solid and is described by the neo-Hookean
model [30,40,42,43]. The deformation field satisfies the mass
and momentum conservation equations [42]

046314-3



AASHISH JAIN AND V. SHANKAR

det(F) =1, 4)

Pw 2
Re( Py )X— Vy P+ n ag. (5)
The above two equations are similar to the ones used by
Gkanis and Kumar [30] except that inertia is included here
and a different nondimensionalization scheme is used. The
deformation gradient tensor is defined as F=Vyw, where
w(X) represents the position vector of a particle in the cur-
rent configuration of the neo-Hookean solid. The capital let-
ter X=(X,Y,Z) denotes the spatial coordinates in the refer-
ence (i.e., unstressed) configuration and hence the subscript
X in (5) indicates the gradient with respect to the reference
coordinates. The Lagrangian displacement vector of material
points is given by u(X)=w(X)—-X. For the liquid, the
(x,y,z) coordinate system is used, and this coordinate system
coincides with the reference coordinate system (X,Y,Z) for
the neo-Hookean solid.
The first Piola Kirchhoff stress tensor P is related to the
Cauchy stress tensor by P=F~!- &, where the Cauchy stress
tensor for a neo-Hookean solid is given by [42,43]

1
0=—ﬁsI+F(F-F7), (6)

where p, is the pressurelike function related to actual pres-
sure in a neo-Hookean solid as p,=p,+1/1'. Here, T’
=uV/GR=pgR sin 0/2G is the ratio of gravitational forces
in the liquid to elastic forces in the solid, and is a measure of
the deformability in the solid layer; here G is the shear
modulus of the solid.

In this study, the densities of liquid and solid are assumed
to be equal without loss of generality. If the densities are
different, then the ratio of solid to liquid densities p,/p; will
appear in the left side of the momentum Eq. (5). The low-
wave-number (k<<1) asymptotic analysis carried out subse-
quently (Sec. IIT A) shows that, to leading order in wave
number, inertial stresses in the solid are O(k?) smaller than
the elastic stresses, and the inertial stresses of the solid layer
do not appear in the low-wave-number limit. Therefore the
low-wave-number asymptotic results are expected to be valid
for any value of the ratio p,/p;. At finite wave numbers, the
inertial stresses could become comparable to the elastic
stresses in the solid layer, and in such cases, there will be
some quantitative difference in the results when the ratio
ps/ p;# 1. However, the qualitative predictions of the present
study are expected to remain unaltered due to the change in
density ratio.

The conditions at the free surface are the kinematic con-
dition for evolution of the free surface and tangential and
normal stress balances. The tangential stress at the free sur-
face is zero and the normal stress in the liquid is balanced by
the hydrostatic pressure in the gas adjacent to it:

dh+vdh=v., (7)

n-T-t=0, (8)
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n-T-n=3/(V-n), 9)

where £ is the free-surface position, n and t are the normal
and tangential unit vectors to the free surface, respectively,
and X ,=y,/uV is the nondimensional surface tension param-
eter at the free surface, with Yy being the dimensional surface
tension at the free surface. At a liquid-solid interface the
velocities and stresses in liquid and solid layers are continu-
ous. The condition of velocity continuity is given as

ow
=—. 10
v ot (10)

The normal and tangential stress balance is given as

n-T-t=n-o-t, (11)

n-o-n-n-T-n=3,(V-n). (12)

Here, n and t are the normal and tangential unit vectors for
the liquid-solid interface. %,=7;/uV is the nondimensional
surface tension parameter, with ; being the dimensional
liquid-solid interface tension. At the bottom rigid surface (z
=1+H) the zero-displacement condition holds for the solid
layer: w(X)=X.

B. Base state

The laminar base state of the present system consists of
unidirectional flow of liquid in the x direction due to gravity.
The solid layer is at rest in this steady state with a nonzero
displacement in the x direction due to liquid shear stress at
the interface. Both gas-liquid and liquid-solid interfaces re-
main flat in the base state. The nondimensional velocity pro-
file, pressure distribution, and polymeric stresses in the lig-
uid layer are given as

v,=1-22, (13)
0.=0, (14)
p=2zcot 6, (15)
7 =0, (16)

7 =-2z, (17)
7. =8Wz2. (18)

The base-state quantities are represented with an overbar in
this paper. The displacement and pressure field for a neo-
Hookean solid are given by

wy=X+IT(1+H? -7, (19)
wz=Z, (20)

|
ps= T +2Z cot 6. (21)

As pointed out by Gkanis and Kumar [30], the displacement
field for both linear and neo-Hookean models remains the
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same; however, there exists a nonzero first-normal stress dif-
ference for a neo-Hookean solid. This first-normal stress dif-
ference is equal to (0,,—0,.)=4I" and it may cause a high-
wave-number instability in the liquid-solid interface [30,40].

C. Linearized governing equations

A temporal linear stability analysis is performed in order
to determine the stability of the coupled solid-liquid system.
All the dynamical quantities (velocities, displacement, pres-
sure, etc.) are perturbed about the base state and are substi-
tuted in the governing equations. The resulting equations are
then linearized about the base state to obtain a set of equa-
tions in terms of the perturbation quantities. The perturba-
tions are expanded in the form of Fourier modes,

[ =F@explikx - c1)], (22)
where f” is the perturbation to any physical variable, k is the
wave number of perturbations, ¢ is the complex wave speed,

and f(z) is the complex amplitude function of the distur-
bance. For the neo-Hookean model, x and z are replaced by
X and Z, respectively. The imaginary part of the complex
wave speed determines the stability of the system, and the
system is unstable (stable) if ¢;>0 (<0). When the above
form of perturbations is substituted in the linearized pertur-
bation equations and boundary conditions, one obtains a set
of equations in terms of amplitude functions and wave speed
c that govern the stability of the system.

Thus, the linearized governing equations for the liquid
layer are (with d,=d/dz)

d.5,+iki, =0, (23)

Relik(D, — ), + (d,0,)7.]
=— ikp + B(d20, - K°T,) + (1 - B)(ikT), +d. 7).
(24)

Relik(v, — ¢)0]
=—d_p+ B0, - k*5,) + (1 - B)(ik7, +d. 7).

(25)

The above equations can be combined to give a single
fourth-order, Orr-Sommerfeld-like equation for

ik Re[ (7, — ¢)(d> - k*) - d°0,]5.
= B(d> - k)0, +(1-p)
X[ (7, - 7) - ik(d> + D)7.],  (26)

where 7, 7, and 7, are obtained from the linearized con-

stitutive Eq. (3):
[1+ Wik(z, - )7, = 2kW.5,+d.5,),  (27)

[1 + Wik(s, - )]7,
= Wd,5, 7, - [Wd, 7, - ik(1 + W) ]5, + d.,,

(28)
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[1 + Wik(z, - ¢)]7,
= 2Wd 5,7, - Wd, 7.5, + [2ik(1 + W7 ) 15, + 2W7.d.5,.
(29)

The governing linearized equations for the neo-Hookean
solid model are

I
L2 s ikimy+ 2 2)ikiv, =0, (30)
az
- o~ 1 2~ dZWX 22 ~
—ikp, + (2 cot O)ikw,+ T —kwy+ 7 = — k’c’Re Wy,
(31

B _dp 1( B dzwz)
— (2TX,)ikp, — (2 cot O)ikivy — — + = — kK> W, +
( z)l Ps (2 cot 0)i Wx T Wz

=—k*c’Re Wwy. (32)

These equations can be condensed in a single fourth-order,
Orr-Sommerfeld-like equation for w,. In both the above two
sets of governing equations, the first equation represents the
continuity or mass conservation equation, and the next two
equations represent the x and z momentum balance, respec-
tively. The interfacial conditions at the free surface and
liquid-solid interface are linearized by Taylor-expanding the
conditions about their respective mean interface positions
[20,40]. Hence, the linearized kinematic and boundary con-
ditions at the unperturbed free surface (z=0) are

ik(ﬁx—c)ﬁ=17z, (33)

B[— 20+ (@ + ikﬁz)] +(1 —3)(?§§Z+ —dﬁ"ﬁ) =0,
dz dz
(34)

~p— (2 cot O)h - K>S h + 2,8% +(1-B7.=0. (35)
Z

Similarly, the linearized boundary conditions at the liquid-
solid interface (z=1) are

U, =—1kcwy, (36)
U+ WZ(dzax)z:l = — ikcwy, (37)

o dw,  _ dw
(- 4T?)ikv, — (ZF)d—ZZ + ikwy + d_ZX

d
= (1= B)(T7, + 8ikWI'¥,) + /BF(% + ikﬁz),
Z

(38)

046314-5



AASHISH JAIN AND V. SHANKAR

- di;Z - ZdWZ —
-p+ 2’8d_z +(1=PB) 7, + Py~ Taz +k*30,=0.
(39)

In the boundary conditions at the liquid-solid interface, the
first two equations are the conditions for continuity of veloci-
ties and the next two represent the balance of tangential and
normal forces, respectively. Finally, the boundary conditions
at the rigid surface (z=1+H) are w=0. This completes the
description of equations that govern the stability of the sys-
tem, and the resulting set of equations can be solved for
complex wave speed c as a function of the parameters Re, W,
B.k, 0,1, H, %, and 3.

III. SOLUTION METHODOLOGY

The free-surface interfacial mode is traditionally analyzed
using a low-wave-number asymptotic analysis, following the
classical work of Yih [2]. For the case of viscoelastic flow
down an inclined plane, a similar analysis was carried out by
Gupta [4,5] and Lai [6], and subsequently by Shagfeh er al.
[7]. In this section, we first generalize these long-wave
analyses for viscoelastic liquids to include the presence of a
deformable solid layer, which is the focus of the present
work. In order to extend these low-k results to finite wave
numbers, we have employed two different numerical meth-
ods: first, a Chebyshev-Tau spectral method [36,37], which
gives us the complete spectrum of eigenvalues for ¢ with
specified values of remaining parameters, and second, an or-
thonormal numerical shooting procedure [44] combined with
a Newton-Raphson method to solve the characteristic equa-
tion for the eigenvalue c.

A. Low-wave-number analysis

The low-wave-number analysis of Yih [2] is extended
here to the case of viscoelastic liquid flow past a neo-
Hookean solid. The method is similar to that used by Shan-
kar and Sahu [20] for Newtonian liquid flow past a linear
elastic solid, and we provide only the key steps involved in
the analysis, and the central result from the analysis. For low
wave numbers (k<<1), the complex wave speed correspond-
ing to the free-surface mode is expanded in an asymptotic
series in k:

c=cO 4 ke oo (40)
If we set 0,~O(1), then the continuity Eq. (23) implies 0,
~O(k) and the x momentum Eq. (24) implies p~ O(k™').

Therefore, the velocities and pressure in the fluid are ex-
panded as

5= 00+ k50 -

=k (4)

F=k5O L 50 4 (42)

Similarly, the displacement field and the pressure in the solid

layer are expanded as
WXZW;E))+]CW§(1)+'“, szkﬁg))+kzw(zl)+...’

(43)
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Po=k PO+ gV e (44)
The Fourier coefficient of the free-surface height fluctuation
h~0(1) as indicated by Eq. (33). We therefore expand h
OO
The following differential equations determine the
leading-order and first correction to the fluid velocity field:

Bde” - i(1 - B =0, (45)
pao! - i1 - a7
=i Re[(T, - O)d* = 25, J5° + (1 - P (70 - 7).
(46)

It turns out that the leading-order displacement field is suffi-
cient in the present low-k analysis, and it is governed by the
following differential equation:

dy w5 = 0. (47)

The boundary and interface conditions for the leading-order
problem are obtained by substituting the asymptotic expan-
sions in Egs. (33)—(39). This results in the following condi-
tions at z=0:

~(0)

~ d ~
—2(1- PO+ (1- P70 + Bk% —2BR0 =0,
74
(48)
-p=0. (49)

The leading-order conditions at the fluid-solid interface z
=1 are given by

7% =0, (50)
V=0, (51)

~(0) ~(0)

0 dw
[——+(1-pr7%=—%, 52
Ao (- praf=""2 (52)
7= (53)
The boundary conditions at z=1+H are simply

wd=0, w=0. (54)

In the low-k limit, the interface conditions [Egs. (36) and
(37)] indicate that the velocities 59 and z}io) satisfy the no-
slip conditions at z=1 to leading order in the analysis, as in a
rigid boundary [Egs. (50) and (51)]. Thus, the solid-layer
deformability does not influence the leading-order fluid ve-
locity field, and so the leading-order wave speed in the
present problem must be identical to that of Gupta [4,5] and
Lai’s [6] analysis. However, the leading-order velocity field
in the liquid layer exerts a shear stress on the solid layer via
the tangential stress condition [Eq. (52)], and this causes a
deformation in the solid layer at leading order. This defor-
mation field in the solid layer affects the first correction to
the wave speed at O(k) in the analysis, in a manner similar to
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that found for Newtonian liquids in Ref. [20]. In the interests
of brevity, we provide only the final result from our
asymptotic analysis:

V=2, (55)

)
= l—;{[4Re +10W(1 - B) -5 cot 6] - 30TH}. (56)

To leading order, we obtain neutrally stable waves, and
the first correction ¢! dictates the stability or instability of
the system depending on the parameters Re, W, 6, I', B, and
H. In the above result for ¢V, the terms inside the square
brackets are identical to those found in Refs. [5] and [6] for
viscoelastic film flows down a rigid incline. The term involv-
ing the product I'H denotes the effect of the solid layer de-
formability on the free-surface mode. There are several in-
teresting features in the above result: First, the leading-order
wave speed is identical to that found in Yih’s [2] analysis
(except for the different scheme of nondimensionalization
used here) for Newtonian liquids, and Lai’s [6] result for
viscoelastic liquids. Second, in the limit of a rigid inclined
plane obtained by setting I" or H=0, the above result reduces
to that of Gupta and Rai [4,5] and Lai [6]. Third, the contri-
bution due to the soft solid layer is stabilizing, and is iden-
tical to the earlier result of Ref. [20] for Newtonian fluids
past a linear elastic solid. Thus, our analysis reveals that the
rheological nature of the liquid (Newtonian vs viscoelastic)
and the solid (linear elastic vs neo-Hookean) has no conse-
quence on the effect of the deformable solid layer in the
low-wave-number limit. This can further be understood by
noting that the leading-order velocity fields and wave speed
in viscoelastic liquids are identical to those in the Newtonian
case, and therefore the deformation field set up in the solid
due to the liquid stresses also remains unchanged when one
proceeds from Newtonian to viscoelastic liquids. This defor-
mation field in the solid is responsible for the stabilizing
contribution proportional to I'H in the first correction ¢,
and hence this remains identical to the Newtonian case. Fur-
ther, when one compares the linear elastic model used in Ref.
[20] to the neo-Hookean model in the present study, again
one can verify that the additional contributions to the linear-
ized stability equations in the neo-Hookean model remain
subdominant for k<< 1, and both the models reduce to iden-
tical sets of equations in this limit. For these reasons, the
stabilizing nature of the solid layer remains invariant to
changes in the constitutive nature of the liquid and solid
layers in the low-k limit.

In Ref. [20], it was shown that the first correction to the
wave speed, which determines the stability of the free-
surface mode, is directly related to the first correction to the
shear stress in the liquid at the free surface. The destabilizing
terms due to fluid elasticity and inertia (proportional, respec-
tively, to W and Re) appear only in the first correction to the
fluid velocity field. In addition to these destabilizing contri-
butions, and in contrast to a rigid surface, the deformation in
the soft solid layer creates a perturbation flow via the shear-
stress continuity condition, which also appears at O(k).
Physically, the perturbation flow at O(k) due to the solid
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deformation opposes the flow due to viscoelastic and inertial
effects, thus resulting in stabilization of the free-surface in-
stability. In particular, the free-surface instability is com-
pletely suppressed in the low-wave-number limit if

30TH > [4Re + 10W(1 — B) = 5 cot 6]. (57)

The above equation can be recast to yield a condition for
instability in terms of Re: The flow is unstable for Re
>Re,, where Re.=(5/4)cot 6—(5/2)W(1-B)+(15/2)I'H.
This criterion also demonstrates the role of the different ef-
fects: when W increases, Re, decreases, implying the desta-
bilizing influence of fluid viscoelasticity. On the other hand,
when I increases, Re, increases, indicating that wall deform-
ability is stabilizing.

However, this result is valid only for perturbations with
wavelengths large compared to the film thickness. In order to
realize the predicted stabilization in an experiment, it is nec-
essary to extend these results to perturbations with arbitrary
wavelengths. This is done using two different numerical
methods, as described below.

B. Numerical methods

In the previous studies [20,40], a numerical Runge-Kutta
integrator was employed to determine the linearly indepen-
dent solutions [44] in the solid and liquid layers, and the
interfacial conditions were used to set up a characteristic
matrix, whose determinant was set to zero in order to deter-
mine the complex wave speed c. A Newton-Raphson itera-
tive technique was employed to solve the characteristic equa-
tion, which requires a good initial guess to converge to the
desired eigenvalue. In Ref. [20], the low-k asymptotic ana-
Iytical result for the free-surface mode was used as a starting
guess for the above numerical method, in order to continue
the low-k result to finite wave numbers. An important feature
of systems involving flow past deformable solid media is that
the fluid-solid interaction itself could give rise to a host of
new instabilities [28,34,35] at the fluid-solid interface. In the
previous study [20], a zero-Re analytical solution was used
to predict the “liquid-solid” mode, and this was further used
as an initial guess for the above numerical procedure. How-
ever, at finite Re and T, there is no guarantee that the only
unstable eigenvalues are those corresponding to the free-
surface mode and the liquid-solid mode continued from the
Re=0 analysis. Indeed, previous studies [34,35,45] have
shown that, at finite inertia, the shear waves in an elastic
solid are modified by the flow, and these become unstable at
finite Re. Thus, any claim of instability suppression in flow
past a deformable solid must be supported by a numerical
methodology that gives rise to all the eigenvalues in the
problem, and not just the ones amenable to asymptotic analy-
sis. To address this issue, we have implemented the
Chebyshev-Tau spectral method, pioneered by Orszag
[36,37,46], for the present problem. The spectral method has
the twin advantages that it does not need any initial guess,
and it provides the complete eigenspectrum for the given
problem. In the Chebyshev-Tau method, the unknown vari-
ables (e.g., velocity field in the fluid and displacement field
in the solid) are expanded in a truncated series of N Cheby-
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shev polynomials. These expansions are substituted in the
linearized governing equations, and the resulting equations
are made orthonormal to the first N—8 Chebyshev polyno-
mials to yield N—8 equations for the unknown coefficients.
The remaining eight equations are obtained from the bound-
ary and interface conditions. This yields a matrix eigenvalue
problem for ¢, which is solved using the “polyeig” eigen-
value solver in MATLAB. To filter out the spurious eigen-
modes that may arise, the truncation level N is increased
until the genuine modes are accurately identified. In addition,
to check the veracity of the eigenmodes, we provide these as
an initial guess to the orthonormal shooting procedure dis-
cussed above, and it is ensured that the eigenvalue obtained
from the spectral code is indeed genuine.

Our spectral code was benchmarked with the results for
several limiting cases available in the existing literature.
First, we reproduced the neutral stability results of Shaqgfeh
et al. [7] for the problem of viscoelastic film flow down a
rigid incline. Although Shaqfeh er al. carry out a spatial sta-
bility analysis (as opposed to the temporal analysis here), for
neutrally stable modes, both the analyses reduce to the same
results [44]. Second, we reproduced the earlier numerical
results for Newtonian liquid flow down a deformable solid
layer [21] by setting either W=0 or B=1. Third, we repro-
duced the low-k analytical results for the present problem in
Sec. IIT A using our spectral code for small k. In all these
cases, good agreement was found between our results and
reported results. Apart from these validation tests for the
spectral code, we have verified that the spectral results are
captured by the orthonormal shooting procedure as well.

IV. RESULTS FROM NUMERICAL SOLUTION

In this section, we present results from the above numeri-
cal methods. The key objectives of the numerical solution are
the following: First, to extend our low-k analytical result for
instability suppression to finite and arbitrary values of wave
number; second, to unambiguously determine the unstable
modes caused by the deformability of the solid layer, and,
consequently, to arrive at predictions for parameter values
wherein there are no instabilities in the composite solid-
liquid system. This would involve construction of “neutral
stability curves” for various unstable modes that demarcate
stable and unstable regions in an appropriate parameter
space.

A. Estimation of parameters

At the outset, we estimate the orders of magnitude of
various nondimensional groups involved in the problem,
which will guide us in choosing these parameters for the
subsequent numerical results. The key parameter denoting
the deformability of the solid layer is I'=pgR sin 0/2G
~pgR/G. Upon using p~10° kg/m?, g~10 m/s?, and G
~10° Pa for very soft solids, we obtain I'~10R, and thus
I'~0.1 for films with R~1072 m. The Reynolds number
Re~ p?gR®/ ? is estimated here for polymer melts and poly-
mer solutions separately. For polymer melts, following the
Appendix of Shaqfeh et al. [7], u~ 10°—10° Pa s, relaxation
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time 7~ 10-100 s, and so Re~1073-107°, which is ex-
tremely small. Therefore, for polymer melts, it is appropriate
to set Re=0 in the following discussion. The Weissenberg
number, which is a nondimensional relaxation time for the
polymer, is estimated as W~ 7zpgR/u~0.1—-1. For polymer
solutions, again following Ref. [7], u~0.1-1 Pas, 7
~1072 s, and thus we estimate Re~1072—1, W~ 1-10. For
the Oldroyd-B fluid, we set the ratio of solvent to total vis-
cosity B8=0.5 in the following discussion. The surface ten-
sion parameter at both the interfaces is estimated as 3
~0.1-1, for dimensional interfacial tension y~ 1072 N/m.
Other parameters include the nondimensional solid to fluid
thickness ratio H, which is varied from 0.5 to 5, and angle of
inclination 6@, which is chosen to be 90° or 50°.

B. Mode structure and mode mixing

It is first useful to anticipate the types of modes present in
the composite system that can potentially become unstable at
different parametric regimes. The mode that is of primary
concern here, of course, is the free-surface mode, which be-
comes unstable in a rigid incline, which can be recovered
from the present problem by setting I'=0. As I is increased,
the solid layer becomes more deformable, and the free-
surface mode is stabilized at low k as predicted by the
asymptotic analysis in Sec. IIl A. When I' is such that it
satisfies Eq. (57), this low-k instability would be completely
suppressed. Whether this predicted stabilization holds for fi-
nite k, and whether the solid deformability can destabilize
this free-surface mode at finite k, will be explored below. In
addition to this free-surface mode, there is another interfacial
mode corresponding to the liquid-solid interface, which can
become unstable at finite wave numbers when the parameter
I' becomes sufficiently large [28], even when Re=0. For a
neo-Hookean solid, this liquid-solid mode also has a high-
wave-number branch [30,40], which is caused by the jump in
first-normal stress at the solid-liquid interface. At Re=0, in
addition, there exist other stable modes in the composite
liquid-solid system, which can be upstream traveling waves,
whose stability is unaffected by wall deformability. At finite
Re, inertial effects in the fluid and the solid become impor-
tant, and a host of new modes corresponding to the coupled
fluid-solid system could also become unstable when I is
sufficiently large [34,35]. For polymer melts, since the Rey-
nolds number is estimated to be very low, we therefore an-
ticipate the possibility of only two modes corresponding to
the free surface and liquid-solid interfaces.

Using our spectral method, we computed the spectrum at
several values of I', and obtained the variation of ¢; and c,
with the wave number k. The objective of this exercise is to
determine whether the predicted stabilization of the free-
surface mode holds for all wave numbers, and to determine
whether or not there are other unstable modes due to the
liquid-solid coupling. It must be noted here that the linear-
ized governing equations for stability of the UCM fluid ex-
hibit, in addition to the interfacial mode, a continuum of
eigenvalues that arise when we set the coefficient multiply-
ing the stress components in the linearized constitutive rela-
tions [Egs. (27)—(29)] to zero. This yields the so-called con-
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FIG. 2. Eigenvalue spectrum in the c,-c; plane for the UCM
fluid showing the continuous spectrum and the unstable free-surface
mode. Data for I'=0.001, k=0.1, Re=0, W=0.5, B=0, 6=50°,
H=1, Ef=2, 2,':1.

tinuous spectrum for viscoelastic liquids [47], which have
¢;=—1/(kW), and with ¢, that can take values continuously
between 0 and 1 (the maximum base-flow velocity; see Fig.
2). The continuous spectrum obtained from the spectral so-
lution appears as a “balloon” (see Fig. 3) in the c,-¢; plane, as
has been noted in earlier studies [47]. Since the nature of the
continuous spectrum is unaffected by the boundary condi-
tions at the liquid-solid interface, the deformability of the
solid has no effect on the continuous spectrum. In our spec-
tral solution, we always observe this stable continuous spec-
trum of eigenvalues, and we find that the free-surface mode
is well separated from this continuous spectrum as shown in
Fig. 2. Therefore we eschew any discussion of the continu-
ous spectrum and restrict our attention only on the free-
surface mode hereafter. The free-surface mode was predicted
to be stabilized in the low-k limit by the solid deformability.
In Figs. 4 and 5, we show how this mode behaves as I is
increased. For reasons that will become clear shortly, we
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FIG. 3. Expanded view of the continuous spectrum in the c¢,-¢;
plane for the UCM fluid: Data same as in Fig. 2 (I'=0.001, k=0.1,
Re=0, W=0.5, =0, 6=50°, H=1, 2,=2, 3;=1).
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FIG. 4. Stabilization of mode 1 by the deformable solid layer at
all wave numbers and the illustration of mode mixing: ¢; vs k for
B=50°, Re=0, B=0, W=0.5, H=1, 2,=2, 3;=1, and different
values of I'.

shall also refer to this mode as mode 1. Figure 4 shows that,
as I is increased from the rigid value (I'=0), we find that the
free-surface instability present in a rigid incline is com-
pletely suppressed at all wave numbers for I'=2 and 4. One
important feature of the free-surface mode in flow past a
deformable solid is that, in the limits of both low (k<<1) and
high (k> 1) wave numbers, we expect the ¢, and c¢; values
for this mode (in the presence of solid deformability) to re-
duce to the result obtained for rigid surfaces. This is because,
as k— 0, our asymptotic analysis in Sec. III A shows that c,
is identical to that obtained in the rigid solid limit, and c; is
O(k). For k> 1, which corresponds to very short wavelength
perturbations, the perturbation velocity field corresponding
to the free-surface mode will be localized near the free sur-
face; hence one would expect the solid deformability to have
no effect at k<<1 and k>1. For I'" less than 4.89, this is
indeed borne out in Figs. 4 and 5, respectively, for ¢; and c,
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FIG. 5. Behavior of mode 1 for increasing values of solid
deformability parameter I illustrating mode mixing: ¢, vs k for
B=50°, Re=0, B=0, W=0.5, H=1, 2,=2, 3,=1 (parameters same
as in Fig. 4).
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FIG. 6. Behavior of mode 2 plotted in terms of ¢; vs k for
increasing values of the solid deformability parameter: Mode
mixing illustrated for 8=50°, Re=0, B=0, W=0.5, H=1, Ef=2,
3,;=1, and different values of I (parameters same as in Fig. 4).

vs k: the ¢, and c; curves for nonzero I' (deformable solid)
approach the behavior corresponding to the rigid surface
limit (I'=0) at low and high k. However, for I'~4.89 and
higher, we find that the ¢; and ¢, curves for mode 1 (contin-
ued from the low-k analysis, and hence nominally identified
as the free-surface mode) switch to a different branch at high
k. This occurs precisely at the same I" and k for both ¢, and
c;. It turns out that this high-k branch corresponds to the
liquid-solid mode, as demonstrated in Figs. 6 and 7. These
figures show again that, for I'<4.89, the mode correspond-
ing to the liquid-solid interface is destabilized at finite k as T’
is increased from zero, and at high enough values of k, all
these curves approach each other. This is again because of
the localization of the velocity perturbations near the liquid-
solid interface at high k. However, for I'~4.89 and higher,
what starts out at low & as a liquid-solid mode approaches the
high-k behavior corresponding to the free-surface mode. Our
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FIG. 7. Behavior of mode 2 plotted in terms of ¢, vs k for
increasing values of solid deformability parameter I': Mode mixing
illustrated for B=50°, Re=0, B=0, W=0.5, H=1, 3;=2, 3;=1
(parameters same as in Fig. 4).
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results further show that at a particular value of I" close to
4.89, the eigenvalues corresponding to the two interfacial
modes are exactly equal.

This phenomenon, whereby a solution exhibits the low-k
behavior corresponding to a given interfacial mode and
smoothly crosses over to the high-k behavior of the other
interfacial mode, has been referred to as “mode mixing” in
the literature, and has been observed in contexts quite differ-
ent from the problem studied in this paper. For instance, it
has been observed in the spectrum of capillary waves and
dilatational fluctuations at a single liquid surface [48,49], as
well as in two-layer Bernard-Marangoni instabilities [50,51].
In this study, we observe this mode-mixing phenomenon be-
tween modes corresponding to liquid-gas and liquid-solid in-
terfaces. A similar phenomenon was also found to occur for
Newtonian liquid film flow past a deformable solid [21]. We
find mode mixing between the two interfacial modes to be a
robust phenomenon, and it persists for a variety of paramet-
ric regimes probed by our numerical analysis. This behavior
implies that the clear mode separation that exists for lower
values of I is no longer true at higher values of I', where the
dynamics of both the interfaces are highly coupled and hence
the two interfacial modes strongly interact with each other.
Furthermore, the labeling of the two modes as free surface
and liquid solid also becomes a little arbitrary, since it would
depend on whether one characterizes a given mode using the
low-k or high-k behavior. In the following discussion, to
avoid ambiguity, we simply refer to the two modes as mode
1 and mode 2, where modes 1 and 2 refer to the eigenvalues
that, respectively, have low-k behavior appropriate to the free
surface and liquid-solid interface. However, since our pri-
mary interest is in identifying the presence or absence of
instabilities, and in the construction of neutral stability dia-
grams demarcating stable and unstable zones, the mode-
mixing phenomenon has little practical relevance for our ob-
jectives.

C. Neutral stability diagrams

The important conclusion from the foregoing discussion
is that as I is increased beyond the critical value given in Eq.
(57), the low-wave-number free-surface instability is sup-
pressed at all wave numbers. However, as I' is increased
further, a finite-wave-number instability occurs when the
solid becomes sufficiently deformable. We now construct
neutral stability diagrams in the I'-k plane to examine if there
is a sufficient range in the values of I where there is no
instability at any wave number, and present such diagrams
for a few representative parameter regimes. These diagrams
could be potentially useful in future experimental studies to
test the predictions of this work.

We first discuss results for the case of B=0 in the
Oldroyd-B model, which represents the case of pure polymer
and no solvent. Figure 8 shows a typical neutral stability
diagram demarcating the stable and unstable zones of the
different modes. As I is increased from very small values,
there is a transition from unstable to stable regions for the
free-surface mode. There is a range of values of I" where
there is no instability for any wave number; this conclusion
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presence of a stability window where all modes are stable: Data for
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was further corroborated using the spectral method by scan-
ning a range of wave numbers for the possibility of unstable
modes, and none were found for this range of I". For I'>1,
however, we find an unstable mode at moderate and high
values of k, and this mode is due to the first-normal-stress
difference at the liquid-solid interface [30,40]. As I' is in-
creased even further, the free surface itself becomes unstable
at finite wave numbers due to wall deformability. The evo-
lution of stable and unstable modes as I' is increased (for a
given value of k) can further be illustrated using the result
from the spectral method, as shown in Fig. 9. The eigenspec-
trum clearly shows how the free-surface mode is stabilized
as I' is increased, and how new unstable modes appear at
very high values of I" for the given value of k. Our numerical
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FIG. 9. Eigenvalue spectrum in the c,-c; plane for the UCM
fluid illustrating the changes in the spectrum as solid deformability
I' is varied. In this plot, the ranges for ¢, and c; are chosen so that
the transition from stable to unstable regions is clearly depicted.
There are a number of stable modes to the left of the ¢;=0 line
which are not shown owing to the large magnitudes of ¢, and c;.
Data for k=0.1, Re=0, W=0.5, =0, 6=50°, H=1, 3,=2, 3;=1.
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one of the upper neutral curves is absent as H is decreased to 0.5:
Data for a UCM fluid with Re=0, W=0.5, B=0, 6=50°, Ef=2,
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results based on the neutral stability diagram show that, as W
is increased from 0.5 in Fig. 8 to higher values, the window
of I where there is no instability decreases with increase in
W. However, as H is decreased to 0.5, the stability window
in terms of range of I" increases as shown in Fig. 10. Indeed,
our numerical results for this data set show that there is only
one unstable mode at high values of I", unlike Fig. 8 for H
=1. While these two figures displayed data for #=50°, Fig.
11 shows that similar features prevail even for the vertically
inclined case.

We next turn to the case of finite (3, i.e., polymer solu-
tions. Figure 12 illustrates that the predictions of instability
suppression, and the presence of a stability window where no
unstable modes are present, hold for the Oldroyd-B case as
well. However, as W is increased to higher values in Fig. 13,
we find an island of unstable modes at k~ 1, whose size was
found to increase with increase in W, and this rules out the
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FIG. 11. Neutral stability curves in the I'-k plane for the vertical
configuration, again demonstrating a zone of stability where all the
modes are stable: Data for UCM fluid with Re=0, W=0.1, B=0,
6=90°, H=0.5, %4=2, 3;=1.
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possibility of instability suppression at all wave numbers in a
polymer solution at higher W. Thus far, the results presented
contained only two modes corresponding to the free surface
and the liquid-solid interface, and these two modes are sta-
bilized or destabilized as I" is varied. However, apart from
these purely interfacial modes, the coupled fluid-solid prob-
lem also admits several other solutions which have been
studied well in the literature [34,35]; these modes correspond
to free shear waves in a solid, which are modified and desta-
bilized by the liquid flow in the presence of inertia, and
hence it is convenient to refer these modes as inertial modes.
For the Oldroyd-B fluid at finite inertia, we find these inertial
modes being destabilized in the film flow as well, and this is
shown in Fig. 14 for #=90°, where we find additional neutral
curves predicted by the spectral method. We have verified
that these unstable modes vanish as Re is decreased, and
hence belong to the class of inertial modes discussed above.
For this parameter set, these additional modes are of no con-
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FIG. 13. Neutral stability diagram in the I'-k plane showing the
presence of a new island of unstable modes as W is increased: Data
for the Oldroyd-B fluid with Re=0.1, W=8, B=0.5, 6=50°,
H=0.5, 2,=2, 3;=1.
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FIG. 14. Neutral stability curves in the I'-k plane for the vertical
geometry: Data for the Oldroyd-B fluid show that new unstable
modes appear at higher values of I', with Re=0.1, W=0.5, 8=0.5,
6=90°, H=1, 2,=2, 3;=1.

sequence, since they occur at very high values of I, and for
such high values of I', the two interfacial modes themselves
are already destabilized. However, for the parameter set
shown in Fig. 15, which is at somewhat higher Re=5 and
H=5, we find a profusion of unstable modes even at lower
value of I'. The complexity of this neutral stability diagram
further underscores the importance of using spectral methods
in order to demonstrate the phenomenon of instability sup-
pression. The use of an orthonormal shooting coupled with a
Newton-Raphson iteration clearly cannot resolve this com-
plex stability behavior owing to the lack of accurate initial
guesses for the various modes. The general trend from our
numerical results indicates that, as Re or H is increased, the
window of stability (in terms of values of I') where no un-
stable modes are present vanishes eventually. For smaller
values of H=1, however, it is possible to obtain a range of
values of shear modulus where there is no instability at any
wave number.
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FIG. 15. Neutral stability curves in the I'-k plane for the
inclined geometry: Data for the Oldroyd-B fluid show that new
unstable modes proliferate. Re=5, W=1, B=0.5, 6=50°, H=5,
3 f=2, 3,=1. The letters U and S, respectively, denote unstable and
stable regions.
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V. CONCLUSIONS

The stability of viscoelastic film flow down an inclined
plane lined with a deformable solid layer was analyzed using
a long-wave asymptotic analysis and a spectral Chebyshev-
Tau numerical method. Our primary objective was to deter-
mine the effect of deformability of the solid layer on the
free-surface unstable mode and other modes present in the
composite system. For rigid inclines, viscoelastic film flows
are unstable even in the absence of fluid inertia due to fluid
elasticity characterized by the Weissenberg number W. Our
low-wave-number asymptotic analysis shows that, in the
presence of the deformable solid layer, the leading-order
wave speed remains real and identical to that for rigid sur-
faces, and the solid deformability appears at O(k), the same
order at which the destabilizing terms due to fluid elasticity
and inertia occur. Importantly, the deformability of the solid
has a stabilizing effect, and the free-surface instability is sup-
pressed in the limit of low k when the solid deformability
parameter I' increases beyond a threshold value. At finite
wave numbers, our numerical solution indicates that the free-
surface and liquid-solid interfacial modes can be destabilized
at higher values of deformability, but there remains a win-
dow of shear modulus of the solid layer where all the modes
are stable at all wave numbers. For low values of solid de-
formability T, the interfacial modes corresponding to the two
interfaces can be unambiguously distinguished based on their
low-k and high-k behavior, but at higher values of T", due to
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mixing of the two interfacial modes, there is a smooth cross-
over from the low-k behavior of a given mode to the high-k
behavior of the second mode. The importance of using a
spectral code to demonstrate instability suppression was fur-
ther exemplified in the results for an Oldroyd-B fluid, where
a profusion of unstable modes were shown to appear due to
the coupling between shear waves in the solid and the liquid
flow, which would not be predicted otherwise. Our results
show that solid deformability parameter I'~ pgR/G must be
0(0.01-0.1) in order to achieve instability suppression,
which suggests that the present predictions can be realized
experimentally for polymeric film flows of thickness
~0.1-1 cm past soft elastic solids of similar thickness with
shear modulus G~ 1-10 kPa. Finally, two general conclu-
sions emerge from the present study about film flows past a
deformable solid. First, in the low-wave-number limit, the
stabilizing contribution due to the solid layer is insensitive to
the rheological descriptions used for the liquid and solid lay-
ers. Second, even at finite wave numbers, the prediction of
the presence of a stable window of shear modulus where all
the unstable modes are suppressed is quite general, irrespec-
tive of whether the liquid is Newtonian or not, and whether
the solid is described by a simple linear elastic model or by
a more accurate neo-Hookean model. Thus, our results sug-
gest that the suppression of free-surface instability is likely
to be a generic phenomenon in liquid film flows past a de-
formable solid layer.
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